Orange Unified School District TRIGONOMETRY

Semester Course

GRADE LEVEL: 11-12

PREREQUISITES: Algebra II "C" grade or better

INTRODUCTION TO THE SUBJECT:

This course is designed to be a rigorous mathematical elective; the next course in the sequence for students who have completed Algebra II. It provides a thorough study of trigonometry. The major themes will be the trigonometric functions, angles and the unit circle, equations and identities, graphs and applications.

PURPOSE OF THE COURSE:

This course is designed as a college prep course aimed at students who are not ready for the rigor of Pre-Calculus and yet desire to take a challenging math course their senior year. It is expected that students who are planning to attend college but perhaps not enter the field of math and engineering will benefit from the rigors of this class.

TEXT: Lial, Margaret L., John Hornsby, David I. Schneider. *Trigonometry*. (6th Edition). Addison Wesley, 1996.

COURSE OBJECTIVES: By the end of the course the student will:

Trigonometric functions:

- Verify basic trigonometric identities and make basic substitutions.
- Use the six trigonometric functions to find sides and angles of a right triangle in standard position.
- They will also be able to solve a basic right triangle.
- Be able to convert from radians to degrees and back.
- Students will completely label a unit circle in radians.
- Special angles (30-60-90 and 45-45-90); will be able to find their measure using a calculator and unit circle
- Students will also be able to find angle measures using inverse trigonometric functions.

Identities and Formulas (angle)

- Verify basic trigonometric identities.
- Properties of the unit circle will be investigated and circular functions will be introduced.
- Students will be able to show the connection between circular functions and trigonometric functions.
- Students will use identities to find all trigonometric functions.
- Students will be able to manipulate angle formulas

Trigonometric Equations

- Solve basic equations and inequalities.
- Graph and translate periods and amplitudes.
- Students will solve right and non-right triangles using trigonometric functions.
- Students will review Pythagorean Theorem and other useful right triangle properties.

Trigonometry Page 2

Polar Coordinates and equations

- Students will be able to translate rectangular coordinates to polar.
- Students will solve and graph basic polar equations.

Complex numbers and Vectors

- Students will understand and be able to graph the trigonometric form of a complex number
- Students will understand the relation to vectors.

COURSE OVERVIEW AND APPROXIMATE UNIT TIME ALLOTMENTS:

FIRST QUARTER

Standard	Concept	Text	Assessment	Projects
Stuniaura		ГСАС		Key Assignments
1	Students will understand the	1.1-1.4	Alternate daily: quiz,	Homework 1.1-1.4
	notion of the angle in both		group warm-up problems	Radian Snowman
	degrees and radians.		Students will demonstrate	
			their understanding of	
			radian measure by using	
			the radius of a circle.	
2	Students know definition of	1.5	Alt daily: quiz and group	Homework 1.5
	the six trigonometric		warm-ups.	Trig A
	functions as x-y coordinates		Students will be quizzed	
	of the unit circle. Students		on the special reference	
	will use the points on the unit		angles, 30°, 60°, and 45°	
	circle to graph sine, cosine		on the unit circle without	
	and tangent functions.		using a calculator.	
	Students review 30-60-90 and			
	45-45-90 triangles.		Chapter I Test: **	
	~		Students take a calculator	
	Students learn to use the		and non-calculator parts of	
	calculator to find the values of		the test.	
	sine, cosine, tangent, and their		(1) use calcs to find trig	
	reciprocals.		and inverse trig $f(x)$	
	Students learn to use the			
	inverse key on a calculator to			
	find the angle of the six trig			
	functions.			
7, 12, 19	Students know the tangent of	2.1-2.4	Alt: quiz & gp warmup	Homework 2.1-2.4
	the angle that a line makes			Similar Triangles
	with the x-axis is equal to the		Chapter 2 test **	worksheet
	slope of the line; students use			Reference Angles
	trig to determine unknown			The Legend of
	sides of angles in right			SOHCAHTOA
	triangles; Students are adept			reading
	at using trig in a variety of			
	applications and word			
	problems.			

Standard	Concent	Toyt	Aggoggmont	Projects
Standard	Concept	Text	Assessment	Key Assignments
3, 9, 19	Students understand the unit	3.1-3.4	Alt: quiz & warmups	Homework 3.1-3.4
	circle and circular functions.			Trig practice 3A
	Be able to convert degrees to		Chapter 3 test **	
	radians.			
	Students will be able to			
	convert from degree to radian			
	and radian to degree without			
	using a calculator.			
4, 5, 6	Students know the domain	4.1-4.3	Alt quiz & warmups	Homework 4.1-4.4
	and range for all basic six			Trig practice 4a
	trigonometry functions.		Chapter 4 test ** is Mid-	
	Students graph all six trig		semester test	
	functions in the form of			
	$y = A\sin(Bx - C) + D;$		Students are given a	
	understand period, amplitude,		timed-test on graphing all	
	phase shift and translations of		six trigonometry functions	
	the graphs.		with domain and range.	
			Students also need to be	
			able to identify the zeros	
			and vertical asymptotes	
			where they apply.	

SECOND QUARTER

Standard	Concent	Toyt	Assessment	Projects
Stanuaru	Concept	Text		Key Assignments
3, 10, 11	Students know the	5.1-5.6	Alt quiz & warmups	Homework 5.1-5.6
	Pythagorean, reciprocal,			Trig practice 5A,B
	quotient, periodic, and even-		Informal assessment on all	
	odd identities. They can use		identities throughout the	
	them to find trig functions and		class period.	
	to verify/establishing			
	identities.		Chapter 5 Test**	
	Students know and can use		Students show how to	
	the half and double angle		rewrite more complex	
	formulas to simplify and find		angle using sum and	
	the value of specific		difference formulas.	
	trigonometry angles.			
8, 9	Students know the definitions	6.1-6.4	Alt quiz & warmups	Homework 6.1-6.4
	of the inverse trig $f(x)$ and can			Trig practice 6A
	graph them; compute by hand		Chapter 6 Test**	Christmas Project:
	values of the trig $f(x)$ and the			Algebra Review
	inverse trig f(x) at various			study guide.(2)
	standard points.			

Standard	Concept	Text	Assessment	Projects Koy Assignments
13 14	Students can identify SAS	71-73	Alt quiz & warmuns	Homework 7 1-7 3
13, 14	SSS ASA and SSA cases	1.1-1.5	Ait quiz & warnups	Trig practice 7A
	Students know the law of		Chapter 7 Test **	The practice 7A
	sines and cosines and use		Chapter / Test	
	them to solve triangles and			
	triangle problems			
14, 15,	Students can find the area of a	8.1-8.6	Alt quiz & warmups	Homework 8.1-8.6
17, 18	triangle: can represent a	0.1 0.0		Trig practice 8A
17,10	complex number in polar		Chapter 8 Test	Trig Cards-
	form and how to multiply			project: create
	their polar form; know		Semester Final:	playing cards of
	DeMoivre's theorem and can		Cumulative	key formulas and
	give nth roots; familiar with			/or concepts for
	polar coordinates of a point		Students express a	final.
	given in rectangular		complex number in polar	
	coordinates and represent		form. They find the n th	
	equations in both rectangular		root using DeMoivre's	
	and polar form.		theorem. Students convert	
			from rectangular	
			coordinates to polar	
			coordinates and vice versa	

** Tests: Tests include both a multiple choice section and a free response where students show their work and receive partial credit for correct work. All assessments include an open ended question that allows students to explain their understanding of a major (standard) concept. Students who do not pass with a 70% or better can retake for a max grade of 70%.

*** Assessment driven instruction: Each test is gone over with students; problems that many students missed are reviewed and placed on the next test. Students know this and prepare using chapter review suggested problems. This in turn makes possible 'spiraling' and make tests partly cumulative.

 Technology is used to find trig functions, graph to examine the changes in period and amplitude.
Projects: Students will compose a Review Study Guide for Algebra II. This is planned because many seniors will be taking ACT and SAT tests. In addition they will take placement test at Jr. College and the ELM and EPT.

DATE OF CONTENT REVISION:	February 2009
DATE OF CURRENT CONTENT REVISION:	August 2010
DATE OF BOARD APPROVAL:	February 12, 2009

TRIGONOMETRY CONTENT STANDARDS

Trigonometry uses the techniques that students have previously learned from the study of algebra and geometry. The trigonometric functions studied are defined geometrically rather than in terms of algebraic equations. Facility with these functions as well as the ability to prove basic identities regarding them is especially important for students intending to study calculus, more advanced mathematics, physics and other sciences, and engineering in college.

1.0 Students understand the notion of angle and how to measure it, in both degrees and radians. They can convert between degrees and radians.

2.0 Students know the definition of sine and cosine as y-and x-coordinates of points on the unit circle and are familiar with the graphs of the sine and cosine functions.

3.0 Students know the identity $\cos^2(x) + \sin^2(x) = 1$:

3.1 Students prove that this identity is equivalent to the Pythagorean theorem (i.e., students can prove this identity by using the Pythagorean theorem and, conversely, they can prove the Pythagorean theorem as a consequence of this identity).

3.2 Students prove other trigonometric identities and simplify others by using the identity $\cos^2(x) + \sin^2(x) = 1$. For example, students use this identity to prove that $\sec^2(x) = \tan^2(x) + 1$.

4.0 Students graph functions of the form $f(t) = A \sin (Bt + C)$ or $f(t) = A \cos (Bt + C)$ and interpret A, B, and C in terms of amplitude, frequency, period, and phase shift.

5.0 Students know the definitions of the tangent and cotangent functions and can graph them.

6.0 Students know the definitions of the secant and cosecant functions and can graph them.

7.0 Students know that the tangent of the angle that a line makes with the x-axis is equal to the slope of the line.

8.0 Students know the definitions of the inverse trigonometric functions and can graph the functions.

9.0 Students compute, by hand, the values of the trigonometric functions and the inverse trigonometric functions at various standard points.

10.0 Students demonstrate an understanding of the addition formulas for sines and cosines and their proofs and can use those formulas to prove and/or simplify other trigonometric identities.

11.0 Students demonstrate an understanding of half-angle and double-angle formulas for sines and cosines and can use those formulas to prove and/or simplify other trigonometric identities.

12.0 Students use trigonometry to determine unknown sides or angles in right triangles.

13.0 Students know the law of sines and the law of cosines and apply those laws to solve problems.

14.0 Students determine the area of a triangle, given one angle and the two adjacent sides.

15.0 Students are familiar with polar coordinates. In particular, they can determine polar coordinates of a point given in rectangular coordinates and vice versa.

16.0 Students represent equations given in rectangular coordinates in terms of polar coordinates.

17.0 Students are familiar with complex numbers. They can represent a complex number in polar form and know how to multiply complex numbers in their polar form.

18.0 Students know DeMoivre's theorem and can give *n*th roots of a complex number given in polar form.

19.0 Students are adept at using trigonometry in a variety of applications and word problems.